If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+8x-245=0
a = 10; b = 8; c = -245;
Δ = b2-4ac
Δ = 82-4·10·(-245)
Δ = 9864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9864}=\sqrt{36*274}=\sqrt{36}*\sqrt{274}=6\sqrt{274}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6\sqrt{274}}{2*10}=\frac{-8-6\sqrt{274}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6\sqrt{274}}{2*10}=\frac{-8+6\sqrt{274}}{20} $
| 0.5x+0.25×2x=9 | | 3.7x+1=2.7× | | F(0)=-x-8 | | 0.08x+0.06(168−x)=32 | | 2x2+20x-224=0 | | 3/2x+19/9=7 | | 5/6+9y=22 | | 263=23-u | | 130+67=3x | | x²+10x=30 | | (1.005)12x=3 | | Y=-1/19x+2 | | 2✖️(70-x)+3x=180 | | e^-1=6 | | .125x+3=`0 | | .125x-3=10 | | -0/4a+3=7 | | -8y-5=3y^2 | | 5.2z-2.19=20.118 | | (3x+6)+(2x+2)=5(x-1)+11 | | (5x-6)/2+(x+1)/5=8 | | y/5+1/4=5y | | 3c^2+2c-2=0 | | 8x-4(x-1)=-2+6x+8 | | 3y-7+y+25=6+8y+14-6y | | -5(-3x+2)-4x-5=−5(−3x+2)−4x−5=-48−48 | | x*0.15=127 | | 84x+672=3276 | | 56x-448=56 | | ?x3=64 | | 13(v+1)-4v=3(3v+2)-12 | | 6.5x+225=42.25+15x |